Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(4): e0013723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37260371

RESUMEN

Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.


Asunto(s)
Eimeria tenella , Toxoplasma , Animales , Eimeria tenella/genética , Proteínas Protozoarias/metabolismo , Esquizontes/metabolismo , Proteómica , Toxoplasma/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Factores de Virulencia/genética
2.
Sci Rep ; 11(1): 21856, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750487

RESUMEN

Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.


Asunto(s)
Apolipoproteínas E/administración & dosificación , Apolipoproteínas E/inmunología , Hepacivirus/inmunología , Virus de la Hepatitis B/inmunología , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Presentación de Antígeno/inmunología , Línea Celular , Femenino , Hepatitis C/inmunología , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C/biosíntesis , Anticuerpos contra la Hepatitis C/sangre , Humanos , Evasión Inmune , Conejos , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/inmunología
3.
Microorganisms ; 9(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34442701

RESUMEN

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host-pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7-9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.

4.
Cell Microbiol ; 21(7): e13027, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30941872

RESUMEN

Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N-terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co-immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.


Asunto(s)
Coccidiosis/genética , Eimeria tenella/genética , Proteínas de la Membrana/genética , Proteínas Protozoarias/genética , Animales , Apoptosis/genética , Pollos/parasitología , Coccidiosis/parasitología , Eimeria tenella/patogenicidad , Puntos de Control de la Fase G1 del Ciclo Celular , Fosfotransferasas/genética , Proteoma/genética , Esporozoítos/genética , Esporozoítos/patogenicidad , Toxoplasma/genética , Toxoplasma/patogenicidad , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...